If xy = yx, where x≠y, then find the value of x and y.

Solution
Given
xy = yx      .....(i)
x≠y      .....(ii)
Let x = ky      .....(iii)
where k is a constant
Equation .....(i), .....(ii) and .....(iii) implies that k≠1.
Inserting x = ky in equation .....(i)
(ky)y = yky
Or, ky . yy = yky
Or, ky = yky . y-y
Or, ky = yky - y
Or, ky = yy(k-1)
Or, ky = (y(k-1))y
Here power of both the sides are y so.
Or, k = y(k-1)
Raising both sides by power of  
 
1
 k-1 
  we get
 

Or, k
 
1
 k-1 

 
= y

y = k
 
1
 k-1 

 
.....(iv)

So, x = ky is given by
x = k (k
 
1
 k-1 

 
)

x = k
 
1
 k-1 
 +1
 

x = k
 
 1 + k - 1 
k-1

 

x = k
 
k
 k-1 

 
.....(v)

Equation .....(v) and .....(iv) gives the values of x and y respectively for k ≠ 1
∴x = k
 
k
 k-1 

 

∴y = k
 
1
 k-1 

 

Comments